太奇教育南宁分校:南宁太奇教育

您现在的位置: > MBA备考辅导MBA数学 > MBA考试数学常考知识点:整数

MBA考试数学常考知识点:整数

2016-04-26 00:00:00 阅读:(太奇教育南宁分校

整数(Integer):像-2,-1,0,1,2这样的数称为整数。(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。在整数系中,自然数为0和正整数的统称,称0为零,称-1、-2、-3、…、-n、… (n为整数)为负整数。正整数、零与负整数构成整数系。 一个给定的整数n可以是负数(n∈Z-),非负数(n∈Z*),零(n=0)或正数(n∈Z+).

  我们以0为界限,将整数分为三大类

  1.正整数,即大于0的整数如,1,2,3······直到n。

  2.0 ,既不是正整数,也不是负整数,它是介于正整数和负整数的数。

  3.负整数,即小于0的整数如,-1,-2,-3······直到-n。

  编辑本段

  正整数

  是从古代以来人类计数的工具。可以说,从“一头牛,两头牛”或是“五个人,六个人”抽象化成正整数的过程是相当自然的。事实,,我们有时候把正整数叫做自然数。

  零

  不仅表示“没有”(“无”),更是表示空位的符号。中国古代用算筹计算数并进行运算时,空位不放算筹,虽无空 位记号,但仍能为位值记数与四则运算创造良好的条件。印度-阿拉伯命数法中的零(Zero)来自印度的(Sunya)字,其原意也是“空”或“空白”。

  负整数

  中国最早引进了负数。《九章算术.方程》中论述的“正负数”,就是整数的加减法。减法的需要也促进了负整数的引入。减法运算可看作求解方程a - b=c,如果a、b是自然数,则所给方程未必有自然数解。为了使它恒有解,就有必要把自然数系扩大为整数系。

  编辑本段

  代数性质

  下表给出任何整数a,b和c的加法和乘法的基本性质。

  性质 加法 乘法

  封闭性 a + b 是整数 a × b 是整数

  结合律 a + (b + c) = (a + b) + c 是整数 a × (b × c) = (a × b) × c 是整数

  交换律 a + b = b + a a × b = b × a

  存在单位元 a + 0 = a a × 1 = a

  存在逆元 a + (-a) = 0 在整数集中,只有1或 -1关于乘法存在整数逆元

  分配律 a × (b + c) = a × b+ a × c

  编辑本段

  整数的性质及应用

  整数的整除性

  整除的概念及其性质

  如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。

  定义:设a,b是给定的数,b≠0,若存在整数c,使得a=bc,则称b整除a,记作b|a,并称b是a的一个约数(因子),称a是b的一个倍数,如果不存在上述c,则称b不能整除a。

  整数整除性的一些数码特征(即常见结论)

  (1)若一个整数的末位数字能被2(或5)整除,则这个数能被2(或5)整除,否则不能;

  (2)一个整数的数码之和能被3(或9)整除,则这个数能被3(或9)整除,否则不能;

  (3)若一个整数的末两位数字能被4(或25)整除,则这个数能被4(或25)整除,否则不能;

  (4)若一个整数的末三位数字能被8(或125)整除,则这个数能被8(或125)整除,否则不能;

  (5)若一个整数的奇位上的数码之和与偶位上的数码之和的差是11的倍数,则这个数能被11整除,否则不能。

  整数的奇偶性

  (1)奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,偶数×偶数=偶数,奇数×偶数=偶数,奇数×奇数=奇数;即任意多个偶数的和、差、积仍为偶数,奇数个奇数的和、差仍为奇数,偶数个奇数的和、差为偶数,奇数与偶数的和为奇数,和为偶数;

  (2)奇数的平方都可以表示成(8m+1)的形式,偶数的平方可以表示为8m或(8m+4)的形式;

  (3)若有限个整数之积为奇数,则其中每个整数都是奇数;若有限个整数之积为偶数,则这些整数中至少有一个是偶数;两个整数的和与差具有相同的奇偶性;偶数的平方根若是整数,它必为偶数。

  完全平方数

  完全平方数及其性质

  能表示为某整数的平方的数称为完全平方数,简称平方数。平方数有以下性质与结论:

  (1)平方数的个位数字只可能是0,1,4,5,6,9;

  (2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只有可能是0或1;

  (3)奇数平方的十位数字是偶数;

  (4)十位数字是奇数的平方数的个位数一定是6;

  (5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除。因而,平方数被9也合乎的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能是0,1,4,7;

  (6)平方数的约数的个数为奇数;

  (7)任何四个连续整数的乘积加1,必定是一个平方数。

  (8)设正整数a,b之积是一个正整数的k次方幂(k≥2),若(a,b)=1,则a,b都是整数的k次方幂。一般地,设正整数a,b,c……之积是一个正整数的k次方幂(k≥2),若a,b,c……两两互素,则a,b,c……都是正整数的k次方幂。